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Abstract—Cloud computing platforms enable applications to
offer low latency access to user data by offering storage services
in several geographically distributed data centers. In this paper,
we identify the high tail latency problem in cloud CDN via
analyzing a large-scale dataset collected from 783,944 users in a
major cloud CDN. We find that the data downloading latency in
cloud CDN is highly variable, which may significantly degrade
the user experience of applications. To address the problem, we
present TailCutter, a workload scheduling mechanism that aims
at optimizing the tail latency while meeting the cost constraint
given by application providers. We further design the Maximum
Tail Minimization Algorithm (MTMA) working in TailCutter
mechanism to optimally solve the Tail Latency Minimization
(TLM) problem in polynomial time. We implement TailCutter
across data centers of Amazon S3 and Microsoft Azure. Our
extensive evaluation using large-scale real world data traces
shows that TailCutter can reduce up to 68% 99th percentile
user-perceived latency in comparison with alternative solutions
under cost constraints.

I. INTRODUCTION

Cloud storage services are gaining tremendous popularity

in recent years by providing the appealing benefits of low

maintenance, easy access and elasticity for geographical online

data storage. A recent study [1] shows that the global cloud

storage market is expected to reach $56.57 billion by 2019,

with a compound annual growth rate of 33.1%. The recent

emergence of cloud storage providers such as Amazon S3,

Microsoft Azure and Google Cloud Storage (GCS) are notable

examples. Cloud storage providers operate data centers that

can offer Internet-based content storage and delivery capa-

bilities with the assurance of service uptime and end user

perceived service quality.

The emergence of cloud storage services provides new

opportunities for application providers. On one hand, applica-

tion providers can build a Content Delivery Network (CDN)

serving users without the high cost of owning or operating

geographically dispersed data centers. On the other hand,

application providers are also able to easily build CDN to

provide low-latency service to their users by leveraging the

distributed data centers offered by cloud providers. This new

breed of CDN based on cloud storage services is referred as

“cloud CDN”. As the user access latency is one of the most

important QoS metrics, a large amount of previous efforts [2]–

[13] have been focusing on how to place replicas in different

clouds and optimize the latency performance in cloud CDN.

On many distributed systems, fetching content via a request

from a single serving node is associated with high latency
variance. This phenomena, often called tail latency, exists not

only in many modern dedicated data centers [14], [15], but

also in cloud CDN. The impact of high latency variance is

problematic for popular applications where even 1% of traffic

corresponds to a significant volume of user requests [16], and

for applications where the user is required to download several

objects (e.g., web page loading) and the user-perceived latency

is constrained by the object downloaded last.

In this paper, we identify, formulate and address a very

important but not yet solved problem: high user-perceived
tail latency in cloud CDN. Our measurement shows that

the high latency variance exists both within the cloud data

center and over the Internet. Quantitatively, we analyze a

recent large-scale dataset collected from a major cloud CDN

named Xuanfeng [17], [18]. The dataset records the latency of

4,084,417 file downloads in a whole week, involving 783,944

users and 563,517 unique files. Surprisingly, we find that

the 99th-percentile download latency can be up to 49× of
the median! These variances are caused by many factors,

including shared resources competition, equipment failure, etc.

[19], and almost impossible to prevent. A feasible solution

needs to reduce the serving latency while living with the high

variability.

Since we observe that the high latency variance exists in

a single cloud, we can leverage multiple cloud data centers

to serve user requests and reduce the serving latency. An

intuitive approach inspired by [7], [19] is to require a user to

handle every data downloading process with a set of redundant

requests to different cloud data centers with the assumption

that data is replicated in each cloud, so that the earliest

response can be used. As our measurement shows in Section

II, leveraging multiple cloud data centers to download data is

effective in reducing the user-perceived tail latency in cloud

CDN. However, cloud storage providers charge their customers

by their bandwidth usage, and application providers often

have a budget for using cloud storage services. Issuing mul-

tiple redundant requests inevitably involves additional traffic

overhead. Therefore, although the approach that issues a set

of requests to different data centers is able to cut high tail

latency, the concrete approach for a user to download data

from different clouds, e.g. which data center a user should



(a) Latency measured in different data centers. (b) Latency measured in different end-hosts.

Fig. 1. High latency variance within cloud data centers and over the Internet.
Fig. 2. CDF of access latency when fetching data
from the Xuanfeng Cloud CDN.

send GET requests to, and in each request how much data

should be downloaded, still needs to be carefully designed to

satisfy the cost constraints of application providers.

To address the high tail latency problem in cloud CDN

and enable application providers to avail of the low cost

benefits provided by cloud services, we propose TailCutter,

a novel workload scheduling mechanism lying between users

and cloud storage data centers. TailCutter helps to schedule

user requests to different data centers and optimize user-

perceived latency while satisfying the cost constraint. In high

level, TailCutter periodically measures the latency distribution

and the workload from every cloud data center to different

IP-prefixes. Then TailCutter schedules all user requests and

decides the concrete download approach (e.g. how much data

should be downloaded from each data center) for every user

to download data, according to the latency distribution, the

pricing policy of different clouds and the cost constraint of

application providers. Finally the schedule results are delivered

to each user and then users download the replica they needed

accordingly.

More specifically, to efficiently solve the problem, we first

formulate the Tail Latency Minimization (TLM) problem that

aims at optimizing the tail latency while meeting application

provider’s cost constraint in cloud CDN. We further design the

Maximum Tail Minimization Algorithm (MTMA) to optimally

solve the TLM problem in polynomial time. We implement our

TailCutter system across a set of data centers in Amazon S3

and Microsoft Azure. Extensive performance evaluation using

a 2 Terabytes real-world data trace provided by a major ISP

shows that our TailCutter can effectively reduce up to 68% of

the 99th percentile user-perceived latency without exceeding

the budget of application providers.

In summary, this paper makes the following contributions.

• By measuring and analyzing the latency performance

in cloud CDN, we identify the high user-perceived tail
latency problem, which may significantly degrade user

experience but has not been addressed in cloud CDN

(§II).

• We formulate the Tail Latency Minimization problem in

cloud CDN. To our best knowledge, we are the first to

optimize the tail latency under the cost constraints in

cloud CDN (§III).

• We propose TailCutter, a novel workload scheduling

mechanism involving the Maximum Tail Minimization

Algorithm (MTMA) to optimally solve the Tail Latency

Minimization problem in polynomial time (§IV).

• We implement TailCutter over multiple cloud data centers

of different providers, and extensive evaluation using a

2 TB real-world data trace collected from a major ISP

demonstrates the effectiveness of TailCutter on reducing

user-perceived tail latency (§V).

II. MEASUREMENT AND MOTIVATION

We begin with a measurement study to motivate our work.

In this section, we 1) quantify the high tail latency in cloud

CDN, and 2) introduce and analyze the basic approach that

leverages multiple clouds to reduce tail latency. We then

highlight the importance of considering cost constraint when

optimizing tail latency in cloud CDN.

Quantifying and analyzing the high tail latency. We

first conduct a lab-scale measurement to quantify the user-

perceived access latency, which is defined as the time for

a user to download a certain file from a cloud. We select

three Amazon S3 data centers in different locations and then

measure the access latency 1) from an EC2 VM to the storage

in the same data center, 2) from our lab to the nearest S3

data center, and 3) from two end-host VMs out of Amazon in

North America and Europe to their nearest S3 data center. In

each case, we issue a single GET request to download a 100

KB file in every 10 seconds in one day. We use tcpdump to

record the packet-level network traces and calculate the user-

perceived access latency. The cumulative distribution function

(CDF) of access latency is plotted in Figure 1. We can see

that the access latency indeed exhibits a wide spread within

the cloud data centers and over the Internet, although the file

size is the same across all experimentations. Specifically, the

99th percentile latency is at least 2× and up to 4× of the

median. The latency measured in an end-host is higher than

the latency measured in a VM inside the cloud data center.

This is because the end-to-end access latency is also impacted

by the intermediate link over the Internet.

We further collect a large-scale dataset from 783,944 X-

uanfeng [17] cloud CDN users. We extract the downloading

time and the fetched file size from the dataset, and plot the

CDF of access latency when downloading files in around

100KB, 1MB and 100MB respectively. As shown in Figure 2,

surprisingly the 99th percentile latency of the 1MB file is 49×
of the median latency. The user-perceived tail latency is much
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Fig. 3. High variance in user-perceived end-to-end latency.

higher in a large-scale commercial cloud CDN as compared to

our lab-scale experiment, because these latency variances are

caused by many complex factors, including shared resources

competition, equipment failure, etc., and are almost impossible

to prevent.

High latency variance can significantly degrade the appli-

cation performance. Worst-case performance matters much

more to applications like the Web that requires excellent user

experience [14]. The high user-perceived tail latency problem
we observed in cloud CDN is very problematic because for

popular applications only 1% of their traffic corresponds to a

significant volume of requests [16]. Besides, for applications

where a single request issued by a user requires the application

to fetch several objects (e.g., web page loading), operation

completion time is constrained by the object fetched last.

Therefore, we need a latency optimization solution in cloud
CDN that can address the latency variance over the Internet
and within the cloud service’s data center network.

Leveraging multiple clouds to reduce latency. Since the

latency of a single cloud data center suffers from significant

variance, a straightforward way to reduce tail latency is to

issue multiple requests to different data centers to download

data. To identify the effectiveness of using multiple clouds, we

place the same 1 MB replica in two Amazon S3 data centers,

and set two nearby VMs as clients that need to download

the replica. Each VM uses two approaches to download the

replica: 1) send a single GET request to the nearest data

center to get the entire replica, and 2) concurrently send

two redundant requests to different data centers, and the first

received response will be used. We repeat the two approaches

100 times and plot the CDF in Figure 3. The measurement
results show that leveraging multiple cloud data centers is
indeed an effective approach that can reduce the latency
variance and decrease the user-perceived latency.

Cost-Effectiveness considerations. To use cloud storage

services, application providers pay money to cloud providers

according to the bandwidth and the storage usage of their

applications. Generally the bandwidth cost is much higher than

the storage cost. Therefore application providers may have a

cost constraint for using cloud storage services. Cloud data

center with lower serving latency may be more expensive.

Although we can leverage multiple clouds to reduce tail
latency in cloud CDN, the concrete approach for all users
to download data should be well considered to meet the cost
constraint of application providers.

Storage

Cloud Data Centers User

Data delivery
GET requests
Latency distribution

Asynchronous replication
Scheduling result

VM

Origin Server

Fig. 4. Problem scenario.

III. PROBLEM FORMULATION

In this section we introduce the problem scenario and

formulate the Tail Latency Minimazation (TLM) problem

across multiple clouds. As shown in Figure 4, the application

provider owns a origin server to store the original data.

Replicas of the original data are pushed to different cloud data

centers asynchronously. In each data center a VM is placed

in front of the storage and can be used to measure the cloud

latency distribution and the workload in a cloud data center.

To download data the user can issue a set of GET requests to

multiple cloud data centers.

In reality, a cloud provider owns and operates multiple

data centers, and each data center belongs to only one

provider. We assume that there are M cloud data centers

C = {C1, C2, ..., CM} indexed by i, and N end users

U = {U1, U2, ..., UN} indexed by j. Since Internet latencies

to any particular data center are similar from all end-hosts in

a same prefix [20], we define the term “user” here as a set of

clients from the same IP prefix.

For ease of exposition, we assume that time is slotted

and each slot lasts for τ seconds. There are K slots in a

scheduling period and each one is indexed by k. As we have

mentioned previously, the serving latency of each cloud data

center inevitably suffers from high variance and the available

bandwidth changes overtime. Let uik denote the total available

bandwidth of cloud i in slot k. Besides, the available end-to-

end bandwidth between a user and a cloud is also limited by

other factors, e.g. the physical distance or RTT. Therefore we

use dijk to denote the bandwidth limit between cloud i and

user j in slot k. Assume that the size of replica is W MB.

A replica is split into multiple ω MB small data units, and a

GET request downloads a certain number of data units. Let

xijk denote the amount of data unit that user j downloads

from cloud i in slot k. User j downloads
M∑
i=1

xijk data units

in slot k and
M∑
i=1

K∑
k=1

xijk data units in total. The amount of

data units delivered by cloud i in slot k is
N∑
j=1

xijk. The goal of

the Tail Latency Minimization problem is to determine how to



assign user requests to different cloud data centers to download

data and minimize the maximum user-perceived latency while

meeting the given cost constraint.

Cloud providers will charge for their outgoing traffic. For

delivering content to end users via GET requests, cloud Ci

charges unit price of Gi per data unit for outgoing traffic.

In practice, some cloud providers (e.g. Amazon) charge the

bandwidth cost according to both the number of GET requests

and the amount of delivered traffic size. In our model, we

assume that each download operation to a cloud data center is

operated in a single GET request. Therefore, the total cost

overhead in a scheduling peroid is
M∑
i=1

N∑
j=1

K∑
k=1

Gi · xijk. In

our problem, we focus on the bandwidth cost because it is

dominant in the overall cost of building a cloud CDN.

Let the binary variable yjk denote the transmission state

of user j in slot k. yjk is 1 if and only if user j has not

finished downloading data in slot k. Note that user j may

pause transmission and not download any data in slot k but yjk
is still 1. Because all users start to download data in the first

slot, yjk is a non-increasing value over time. Therefore, the

user perceived latency of user j can be formulated as
K∑

k=1

yjk.

In summary, assume that in a scheduling period the total

cost constraint given by the application provider is f and the

access frequency from user j, which is defined as the total

times that user j requests to the same file in all K slots, is

Rj . Our TLM problem can be formulated as follows:

min{max{
K∑

k=1

yjk}} (1)

subject to:

M∑

i=1

K∑

k=1

xijk =
Rj ·W

ω
, ∀j ∈ U (2)

M∑

i=1

N∑

j=1

K∑

k=1

Gi · xijk ≤ f (3)

N∑

j=1

ω · xijk ≤ uik · τ, ∀i ∈ C, k ∈ K (4)

ω · xijk ≤ dijk · τ, ∀i ∈ C, j ∈ U, k ∈ K (5)

M∑

i=1

xijk ≤ Rj ·W
ω

· yjk, ∀j ∈ U, k ∈ K (6)

M∑

i=1

xijk > yjk − yj(k+1) − 1, ∀j ∈ U, k ∈ K (7)

yjk ≥ yj(k+1), yjk ∈ {0, 1}, xijk ∈ N, ∀j ∈ U, k ∈ K (8)

The goal of TLM is to find a proper assignment for all

requests that minimizes the maximum user-perceived latency

among all users. Constraint (2) guarantees that each user

downloads enough data from all clouds in a scheduling period.

Constraint (3) indicates that the total bandwidth cost should

not exceed the cost limit f . Constraint (4) and (5) require

that in every time slot, the total amount of data delivered by

cloud i should not exceed the cloud capacity, and the available

bandwidth between a user and a cloud is limited by the end-to-

end bandwidth constraint. The specially designed constraints

(6) and (7) indicate that a user can download data units from

cloud data centers if and only if the transmission does not

complete. Constraint (8) guarantees binary value yjk is non-

increasing overtime, and xijk is natural number. The notations

used in this paper are summarized in Table I

Our TLM problem is essentially an instance of the Integer

Linear Programming (ILP) problem. We implement the ILP

formulation and solve it with CPLEX. The typical running

time for the solver ranges from minutes to hours which is too

long to be practical. This also motivates the need for a more

efficient solution.

IV. TAILCUTTER MECHANISM

In this section, we present TailCutter, a novel workload

scheduling mechanism that leverages the workload and latency

distribution in different cloud centers to wisely schedule

requests of users and optimize the tail latency under the cost

constraints. Next we first study on a simplified scenario with

only two clouds in a single slot, and then address the TLM

problem in the general scenario.

A. Feasibility checking for two clouds in a singe slot

We first solve our problem by considering a simplified

version with two clouds in a single slot (M = 2, K = 1).

Since time is slotted and there is only one slot, any feasible

solution obtains the minimal latency 1. Therefore our goal in

this scenario is to find a feasible solution that has the minimal

cost. Our basic idea to find a feasible solution is to greedily let

a user download data from a cheaper cloud until the cheaper

cloud is fully loaded. Here we assume that for any user j ∈ U
the needed data size Rj ∗W is lower than the total available

bandwidth of user j, i.e. Rj ∗ W ≤ (d1j + d2j). Otherwise

there is no feasible solution.

TABLE I
SUMMARY OF NOTATIONS.

Term Definition
Ci Cloud site i

Uj User j

Gi Cost per data unit of Ci

xijk The amount of data unit downloaded by of Uj

from Ci in slot k
τ Time period of a slot

uik Bandwidth of cloud site i in slot k
dijk End-to-end bandwidth between cloud site i and

user j in slot k
ω The size of every data unit

Rj Replica’s access frequency of Uj

f The total storage cost constraint



Algorithm 1 Greedy Algorithm

Inputs: Cloud sites C, Users U , Cloud capacity ui, End-to-

end capacity dij , Request frequency Rj , Cost per unit Gi

Outputs: xij

1: //Without loss of generality we assume that G1 ≤ G2

2: for all j ∈ U do
3: x1j ← min{R·W,d1j}

ω , x2j ← R·W−x1j ·w
ω

4: end for
5: if

N∑
j=1

x2j > u2 then

6: //Cannot find a feasible solution.

7: No feasible solution, return.

8: else if
N∑
j=1

x1j < u1 and
N∑
j=1

x2j < u2 then

9: //A feasible solution with minimal cost is found.

10: return all xij .

11: else
12: //

N∑
j=1

x1j > u1 and
N∑
j=1

x2j < u2

13: u1 ← u1 −
N∑
j=1

x1j

14: for j = 1 : N do
15: //Move workload to C2

16: δ ← min{−u1, (d1j)}
17: x1j ← (x1j − δ), x2j ← (x2j + δ), u1 ← (u1 + δ)

18: if u1 ≥ 0 and
N∑
j=1

x2j ≤ u2 then

19: return all xij .

20: end if
21: end for
22: No feasible solution, return.

23: end if

Algorithm 1 shows the detail of our greedy algorithm.

Without loss of generality we assume that the cost of cloud

satisfies G1 ≤ G2. To find a feasible solution, we first allocate

as much as possible bandwidth of C1 to all users (line 2-4).

In this way, the bandwidth allocated to each user is limited by

both needed data size (Rj ·W ) and the end-to-end bandwidth

constraint dij . After allocation, if C2 is overused now, no

feasible solution can be found (line 5-7) because we cannot

allocate more bandwidth from the cheaper cloud C1. A feasible

solution with the minimal cost is found if both clouds are not

fully loaded (line 8-10). However, doing this may cause the

workload of C1 to exceed its overall available bandwidth. We

then consider the scenario where C1 is fully loaded but C2

is still available We consider to move some workloads from

C1 to C2. We update u1 in line 13. Since u1 is the available

bandwidth of C1, a negative value indicates overloading. We

gradually move some workloads from C1 to C2 (line 14-21)

while making sure that the cheaper cloud is fully used. During

this process, we are able to find a feasible solution when C1

is exactly full and C2 is not overload (line 18-19). Otherwise,

we cannot find a feasible solution. Algorithm 1 can output the

optimal solution in O(N) in the two-cloud scenario, where

N is the amount of users. However, it is difficult to extend

Algorithm 1 to solve the problem where more clouds and time

slots are considered.

B. Maximum Tail Minimization Algorithm

We further study the more complex scenario and design

a polynomial time optimal algorithm, named Maximum Tail
Minimization Algorithm (MTMA) to solve the problem with

more clouds in multiple slots. The basic approach of our

algorithm is to search the optimal solution by repeating the

following two steps: 1) construct a flow network graph G
according to all inputs, and transform TLM to the MCMF

problem; 2) use binary search to find a latency D so that

MCMF algorithm on the corresponding graph has a solution

while the corresponding cost is exactly less than constraint f .

Transforming to MCMF problem: We first construct a

network flow graph based on the TLM problem and transform

our problem to the Minimum Cost Maximal Flow (MCMF)

problem. Assume that there is only one single slot. We build

a graph G(V,E) as shown in Figure 5, where the vertex set

V contains all elements in the cloud site set C and user set

U , together with a source vertex s and a sink vertex t in

V . Edges between cloud i and user j have two attributes: 1)

the link capacity of the edge, which is set to the end-to-end

bandwidth constraint dij , and 2) the cost for every data unit

delivered in this edge, which is set to zero. For each edge

between s and user j, the link capacity is set to
Rj ·W

ω , and

the cost is set to zero. We set the capacity and cost of the edge

between cloud i and t to be ui and Gi respectively. Thus we

obtain the network flow graph shown in Figure 5.

Note that in the single slot scenario, our problem is to

find a feasible solution with the minimum cost. Our TLM

problem is then transformed to the Minimum Cost Maximal

Flow problem in Figure 5: given a network graph G(V,E)
where each edge has a cost for delivered data units and a

capacity, how to assign the number of delivered data unit in

every edge to find a feasible solution while minimizing the

total cost.

Next we consider the TLM problem in multiple slots.

Assume the number of slot is D. Following the method

introduced above, we construct the network flow graph for the

multiple-slot scenario by making copies of cloud data centers

for different slots. As shown in Figure 6, we set the capacity

and cost of edges linked to these new vertexes following

the way in single slot scenario. Let GD(V,E) denote the

graph constructed for D slots, our TLM problem in multiple

slots scenario can be transformed to the problem of finding

the minimum D guaranteeing that GD(V,E) has a feasible

MCMF solution.

Searching the optimal solution: We do a binary search

on D to find the minimum D and the corresponding data

unit assignment in each edge. Specificaly, we start with a

sufficiently large Dright as the latency allowed (for example,

the maximum latency when we let every user download data

from his closest cloud) and then use binary search to find

a latency D so that MCMF algorithm on the corresponding



Fig. 5. Problem transformation: single slot.

Fig. 6. Problem transformation: multiple slots.

graph has a solution with cost at most f but generates a

solution with cost larger than f for D − 1 copies of cloud

data centers.

Algorithm 2 shows how we search the minimum latency

that meets the cost overhead constraint. To improve efficiency,

we conduct binary search on latency D. We set the search

scope from zero (Dleft) to the latency of the approach that

every user sends request to their nearest data center (Dnearest).

We initialize the latency (line 1-2) and then we construct the

flow graph using D as we described above (line 4). We use

binary search on D and in every iteration we solve the MCMF

problem in the constructed network flow graph (line 3-21). The

optimal solution D is found if cost(D) ≤ f and cost(D−1) >
f (line 11-13). Our MTMA can optimally solve the problem

in polynomial time. MTMA conducts a binary search to find

the optimal feasible solution and in each iteration we solve

the MCMF problem to find a feasible solution.

V. PERFORMANCE EVALUATION

Using real world data traces, in this section we evaluate

the effectiveness of TailCutter prototype implemented on data

centers of several cloud providers. We also conduct extensive

simulation to evaluate the performance of TailCutter at scale.

A. Prototyping

We implement TailCutter server over five data centers across

Amazon S3 and Microsoft Azure. To download an object, the

user issues a set of requests to multiple cloud data centers

following the decision made by TailCutter. In each cloud data

center we leverage a VM to call the cloud API given by cloud

providers to fetch data from the local storage. Content in the

storage of a data center is delivered to the user relying on

the VM. Communications between the user and the VM are

based on HTTP. We extract the time stamp from network traces

captured by tcpdump to analyze the latency distribution. At

Algorithm 2 Maximum Tail Minimization Algorithm

Inputs: Cloud sites C, Users U , Cloud capacity uik, End-

to-end capacity dijk, Request frequency Rj , Cost per unit ci,
Cost constraint f
Outputs: D, xijk

1: Dleft ← 0, Dright ← Dnearest

2: D ← Dleft+Dright

2
3: while TRUE do
4: Construct the graph GD(V,E) according to D, C, U ,

uik, dijk, Rj , ci, f .

5: Solve GD(V,E) by MCMF to get the solution X .

6: if X does not exist then
7: D =

D+Dright

2
8: else
9: //Find a feasible solution.

10: cost(D) ←
M∑
i=1

N∑
j=1

K∑
k=1

xijk ·Gi

11: if cost(D) ≤ f then
12: if cost(D − 1) > f then
13: break, return xijk and D.

14: else
15: D =

D+Dleft

2
16: end if
17: else
18: D =

D+Dright

2
19: end if
20: end if
21: end while

runtime, the VM also measures the access frequency of each

replica. Both the latency distribution and workload information

are stored in a SQLite database in the VM, and are used

for scheduling in every schedule period. We rent 12 VMs in

different geographic locations as our users, and implement the

TailCutter client on them.

We run our scheduling algorithm in the central origin

server according to the measured workload and bandwidth

distribution. Before the first scheduling period, replicas are

delivered to each cloud data center via the cloud API given

by cloud providers. The access tokens of all clouds are stored

in a SQLite database in the origin server.

B. Experimentation setup

In our experiment, the scheduling period T is set to 1 hour

and each slot lasts 1 min. We set the cost overhead of each

cloud according to the corresponding pricing policy. We use a

large scale real-world data trace to evaluate our prototype. Our

large traffic flow trace is generated from 99 collection points

by a local major ISP on January 10, 2013. The trace data

captures about 821 million flow records (about 2 Terabytes).

Each record corresponds to the information of one flow which

contains the user IP, server IP, flow time stamps, downloading

data size but without any personal data.

Next, we first use the real-world data trace to evaluate

our TailCutter prototype from three perspectives: 1) its cost-
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Fig. 7. Cost-efficiency evaluation in satisfying cost constraint.

effectiveness in optimizing user-perceived latency, 2) its ability

in cutting tail latency, 3) its efficiency executing our request

scheduling algorithm. We further conduct large scale simula-

tion to demonstrate the effectiveness of TailCutter at scale.

C. Cost-effectiveness

An application that uses TailCutter incurs additional costs

for issuing multiple requests to fetch data from different cloud

data centers. Intuitively, given a higher budget, TailCutter

fetches more data from the cloud with lower latency but

higher cost to optimize the latency performance. We change

the overall cost overhead constraint to quantify how TailCutter

reduces the maximal user-perceived latency under different

budgets. In this case, we randomly pick workload from 12

IPv4 subnetworks (/24) as the input of TailCutter.

Figure 7 depicts the maximal user-perceived latency as a

function of the cost overhead constraint f . At the higher end

of the examined range of budget f , TailCutter significantly

reduces the tail latency by making more users fetch data from

a faster but expensive cloud to speed up data transmission. As

the budget f decreases, latency increases because TailCutter

tries to find the cheaper clouds to serve users or selects less

cloud data centers to process user requests. Because of the

lower available bandwidth and resource competition, the user-

perceived latency is increased.

D. Ability to reduce serving latency

TailCutter is able to meet cost overhead constraint and

optimize user-perceived latency by properly scheduling user

requests to different cloud data centers. We randomly select

workload from 12 subnetworks twice, and for each selection

the average fetched data size is below or above 512KB to

generate light and heavy workload respectively. We then run

TailCutter under different scale of workloads and compare

the result with GRP [2]. GRP is a user request assignment

algorithm that optimizes QoS in cloud CDN. However, GRP

ignores the high latency variance within the cloud data centers

and over the Internet.

Figure 8 shows the tail latency of TailCutter and GRP

with light and heavy workload. We observe that TailCutter’s

tail latency profile, even at the 99.9th percentile degrades

proportionally to the increase in system load. Furthermore,

for all 95th, 99th and 99.9th percentile of latency, TailCutter

outperforms GRP up to 48%. This is because GRP does not

(a) 95th percentile (b) 99th percentile (c) 99.9th percentile

Fig. 8. Tail latency reduction of light and heavy workload.
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Fig. 9. Verification of TailCutter’s ability to reduce latency variance.

consider the high latency variance within cloud data centers

and over the Internet, and statically assign user requests to

a single cloud. However, using a single cloud to serve users

when the available capacity of a cloud and the end-to-end

bandwidth significantly change over time is unable to limit

the maximum user-perceived latency among all users. As a

result GRP is hard to guarantee low latency especially when

the system workload increases.

To evaluate the variance of each algorithm in different

workloads, we also plot the CDF of the latency when we

use GRP and TailCutter to download data with light and

heavy workload in Figure 9. We observe that TailCutter can

effectively decrease the user-perceived latency and also reduce

the latency variance as compared to GRP.

E. Running time in practice

We leverage three different algorithms, straightforward solv-

ing the ILP problem, TailCutter and GRP to make scheduling

decision for all the requests from 12 subnetworks for a

scheduling period. We compute the average running time per

subnetwork to evaluate their running time in practice. We

repeat this for cost constraint ranging from $5000 to $7000,

and the result is presented in Figure 10. As shown in Figure

10, solving the original integer linear programming problem

by CPLEX to schedule requests of a period consumes more

than half hour, which is not feasible in a real system. However,

even though TailCutter costs more computation time than GRP,

consuming 100s to obtain the scheduling results for the next

1 hour is feasible for a real world workload monitor system.
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F. Simulation at scale

In the above experiments we evaluate our TailCutter pro-

totype and demonstrate the effectiveness to reduce user-

perceived tail latency while satisfying the cost constraint. We

finally conduct a large scale simulation to evaluate TailCutter

at scale. We set 20 cloud data centers and select 4 workloads

differing in the amount of subnetworks from our trace data.

These 4 workloads generate data respectively. The TailCutter

simulator is built using Matlab in around 1000 lines code. We

set the bandwidth distribution and the pricing policy following

the similar way in our prototype experimentation. Also we

compare the results of TailCutter with the GRP algorithm.

Figure 11 plots CDF of the completion time of all requests

in different workload scale. The user-perceived latency in-

creases as the scale of workload increases because of more

resource competitions. We find that the proportion of low

latency request in TailCutter is slightly lower than that in GRP.

But TailCutter reduces up to 68% tail latency compared with

GRP. This result indicates that TailCutter can wisely schedule

user requests to different cloud data centers and avoid long

user-perceived tail latency in the network condition where high

latency variance happens.

VI. RELATED WORK

A considerable amount of research has been done on

optimizing the performance of cloud storage services.

Optimizing QoS in cloud CDN. A lot of research has

been done for optimizing the QoS in cloud CDN [2]–[9], [21]–

[24]. Authors of [10] and [11] proposed algorithms to optimize

total storage and update cost. They used the assumption that

requests can be issued from any node, but ignored retrieval

cost. Rodolakis et al. [12] added server capacity limitation to

the formulation while optimizing storage and retrieval cost.

Broberg et al. [13] proposed MetaCDN and designed mech-

anisms to place content in different cloud storage provider

networks and redirect user requests to appropriate replicas.

However no replica placement and request redirection algorith-

m is given. All solutions described above are static in nature in

that they simply assume that the link quality between the client

and the cloud is constant. They ignore the latency variance

within cloud data center or over the Internet.

Improving cloud data centers. Several recent studies

redesign storage systems and data centers to offer bandwidth

guarantees to tenants [25], or to ensure predictable completion

times for TCP flows [14], [26], [27]. However, all of their s-

tudies require modifications to a cloud service’s infrastructure.

It is unknown whether and when cloud storage providers will

improve their infrastructure to these more complex designs.

TailCutter instead satisfies cost constraint for applications

deployed on the cloud and optimizes user-perceived latency

without having to wait for any modifications to cloud services.

Reducing variance of cloud services. The approach of

issuing multiple requests to different clouds to reduce tail

latency has been considered previously [7], [19], but the

focus has primarily been on understanding the implications of

redundancy on system load. In contrast, our work is the first

to formulate and address the problem of how to issue multiple

requests to different cloud data centers to reduce use-perceived

latency under the cost constraints.

Cloud measurement studies. Previous studies have com-

pared the performance offered by different cloud providers

[28] and studied application deployments on the cloud [29].

Moreover, Bodik et al. [30] focused on characterizing and

modeling spikes in application workloads. All these previous

work complement our work. Furthermore, our measurement

in this paper demonstrates that the tail latency problem inside

traditional cloud data centers also exists in cloud CDN, and

we further highlight that the high tail latency is caused by

inevitable reasons within cloud data centers and over the

Internet.

VII. CONCLUSION

In this paper, we identify, formulate and address the high

user-perceived latency problem in cloud CDN. Specifically,

we measure and analyze the latency performance of cloud

storage services, finding that the high tail latency problem

indeed exists in cloud CDN. We then formulate the problem of

how to minimize the tail latency in a network condition where

high latency variance is inevitable. To address this problem

we propose and implement TailCutter, a request scheduling

mechanism that leverages multiple requests to different cloud

data centers to reduce tail latency. We implement TailCutter in

modern cloud providers’ data centers and extensive evaluations

using real world data traces show that TailCutter is able to cut

up to 68% tail latency in cloud CDN.
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